Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Molecules ; 28(11)2023 May 24.
Article in English | MEDLINE | ID: covidwho-20232674

ABSTRACT

Ultraviolet C (UVC) devices are an effective means of disinfecting surfaces and protecting medical tools against various microbes, including coronavirus. Overexposure to UVC can induce oxidative stress, damage the genetic material, and harm biological systems. This study investigated the prophylactic efficacy of vitamin C and B12 against hepatotoxicity in UVC-intoxicated rats. Rats were irradiated with UVC (725.76, 967.68, and 1048.36 J/cm2) for 2 weeks. The rats were pretreated with the aforementioned antioxidants for two months before UVC irradiation. The prophylactic effect of vitamins against UVC hepatotoxicity was evaluated by monitoring the alteration of liver enzyme activities, antioxidant status, apoptotic and inflammatory markers, DNA fragmentation, and histological and ultrastructural alterations. Rats exposed to UVC showed a significant increase in liver enzymes, oxidant-antioxidant balance disruption, and increased hepatic inflammatory markers (TNF-α, IL-1ß, iNOS, and IDO-1). Additionally, obvious over-expression of activated caspase-3 protein and DNA fragmentation were detected. Histological and ultrastructural examinations verified the biochemical findings. Co-treatment with vitamins ameliorated the deviated parameters to variable degrees. In conclusion, vitamin C could alleviate UVC-induced hepatotoxicity more than vitamin B12 by diminishing oxidative stress, inflammation, and DNA damage. This study could provide a reference for the clinical practice of vitamin C and B12 as radioprotective for workers in UVC disinfectant areas.


Subject(s)
Antioxidants , Chemical and Drug Induced Liver Injury , Rats , Male , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Vitamin B 12/metabolism , Vitamins/pharmacology , Oxidative Stress , Vitamin A/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/metabolism , Liver
2.
Mol Biol Rep ; 50(7): 5827-5836, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20230640

ABSTRACT

BACKGROUND: Oxidative stress is thought to play a significant role in the pathogenesis and severity of COVID-19. Additionally, angiotensin converting enzyme 2 (ACE2) expression may predict the severity and clinical course of COVID-19. Accordingly, the aim of the present study was to evaluate the association of oxidative stress and ACE2 expression with the clinical severity in patients with COVID-19. METHODS AND RESULTS: The present study comprised 40 patients with COVID-19 and 40 matched healthy controls, recruited between September 2021 and March 2022. ACE 2 expression levels were measured using Hera plus SYBR Green qPCR kits with GAPDH used as an internal control. Serum melatonin (MLT) levels, serum malondialdehyde (MDA) levels, and total antioxidant capacity (TAC) were estimated using ELISA. The correlations between the levels of the studied markers and clinical indicators of disease severity were evaluated. Significantly, lower expression of ACE2 was observed in COVID-19 patients compared to controls. Patients with COVID-19 had lower serum levels of TAC and MLT but higher serum levels of MDA compared to normal controls. Serum MDA levels were correlated with diastolic blood pressure (DBP), Glasgow coma scale (GCS) scores, and serum potassium levels. Serum MLT levels were positively correlated with DBP, mean arterial pressure (MAP), respiratory rate, and serum potassium levels. TAC was correlated with GCS, mean platelet volume, and serum creatinine levels. Serum MLT levels were significantly lower in patients treated with remdesivir and inotropes. Receiver operating characteristic curve analysis demonstrates that all markers had utility in discriminating COVID-19 patients from healthy controls. CONCLUSIONS: Increased oxidative stress and increased ACE2 expression were correlated with disease severity and poor outcomes in hospitalized patients with COVID-19 in the present study. Melatonin supplementation may provide a utility as an adjuvant therapy in decreasing disease severity and death in COVID-19 patients.


Subject(s)
COVID-19 , Melatonin , Humans , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antioxidants/metabolism , COVID-19/genetics , Gene Expression , Oxidative Stress/genetics , Patient Acuity , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism
3.
Pharm Biol ; 61(1): 755-766, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2312315

ABSTRACT

CONTEXT: Vancomycin (VCM), an important antibiotic against refractory infections, has been used to treat secondary infections in severe COVID-19 patients. Regrettably, VCM treatment has been associated with nephrotoxicity. Vitamin D3 can prevent nephrotoxicity through its antioxidant effect. OBJECTIVE: This study tests the antioxidant effect of vitamin D3 in the prevention of VCM-induced nephrotoxicity. MATERIALS AND METHODS: Wistar Albino rats (21) were randomly divided into 3 groups: (A) control; (B) VCM 300 mg/kg daily for 1 week; and (C) VCM plus vitamin D3 500 IU/kg daily for 2 weeks. All the rats were sacrificed and serum was separated to determine kidney function parameters. Their kidneys were also dissected for histological examination and for oxidative stress markers. RESULTS: Lipid peroxidation, creatinine, and urea levels decreased significantly (p < 0.0001) in the vitamin D3-treated group (14.46, 84.11, 36.17%, respectively) compared to the VCM group that was given VCM (MIC<2 µg/mL) only. A significant increase was observed in superoxide dismutase levels in the vitamin D3-treated group (p < 0.05) compared to rats without treatment. Furthermore, kidney histopathology of the rats treated with vitamin D3 showed that dilatation, vacuolization and necrosis tubules decreased significantly (p < 0.05) compared with those in the VCM group. Glomerular injury, hyaline dystrophy, and inflammation improved significantly in the vitamin D3 group (p < 0.001, p < 0.05, p < 0.05, respectively) compared with the VCM group. DISCUSSION AND CONCLUSIONS: Vitamin D3 can prevent VCM nephrotoxicity. Therefore, the appropriate dose of this vitamin must be determined, especially for those infected with COVID-19 and receiving VCM, to manage their secondary infections.


Subject(s)
COVID-19 , Coinfection , Animals , Rats , Vancomycin/toxicity , Antioxidants/pharmacology , Antioxidants/metabolism , Cholecalciferol/pharmacology , Cholecalciferol/metabolism , Coinfection/metabolism , Coinfection/pathology , Rats, Wistar , COVID-19/metabolism , Kidney , Oxidative Stress
4.
Cells ; 12(6)2023 03 08.
Article in English | MEDLINE | ID: covidwho-2299608

ABSTRACT

Melatonin is a neurohormone that is mainly secreted by the pineal gland. It coordinates the work of the superior biological clock and consequently affects many processes in the human body. Disorders of the waking and sleeping period result in nervous system imbalance and generate metabolic and endocrine derangements. The purpose of this review is to provide information regarding the potential benefits of melatonin use, particularly in kidney diseases. The impact on the cardiovascular system, diabetes, and homeostasis causes melatonin to be indirectly connected to kidney function and quality of life in people with chronic kidney disease. Moreover, there are numerous reports showing that melatonin plays a role as an antioxidant, free radical scavenger, and cytoprotective agent. This means that the supplementation of melatonin can be helpful in almost every type of kidney injury because inflammation, apoptosis, and oxidative stress occur, regardless of the mechanism. The administration of melatonin has a renoprotective effect and inhibits the progression of complications connected to renal failure. It is very important that exogenous melatonin supplementation is well tolerated and that the number of side effects caused by this type of treatment is low.


Subject(s)
Melatonin , Renal Insufficiency, Chronic , Humans , Melatonin/pharmacology , Melatonin/therapeutic use , Melatonin/metabolism , Quality of Life , Antioxidants/metabolism , Kidney/metabolism , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism
5.
Bull Exp Biol Med ; 174(4): 464-467, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2279107

ABSTRACT

There is practically no information on the state of oxidative stress reactions in newborns with coronavirus infections. At the same time, such studies are extremely important and can contribute to better understanding of the process of reactivity in patients of different ages. The content of pro- and antioxidant status indicators was assessed in 44 newborns with confirmed COVID-19. It was found that the content of compounds with unsaturated double bonds, primary, secondary, and final LPO products were elevated in newborns with COVID-19. These changes were accompanied by higher SOD activity and retinol level and reduced activity of glutathione peroxidase. Contrary to popular opinion, newborns can be a COVID-19-susceptible age group and require more close monitoring of metabolic reactions during the period of neonatal adaptation that is an aggravating background during infection.


Subject(s)
Antioxidants , COVID-19 , Humans , Infant, Newborn , Antioxidants/metabolism , Superoxide Dismutase/metabolism , Lipid Peroxidation , Oxidation-Reduction , Glutathione Peroxidase/metabolism , Oxidative Stress , Glutathione/metabolism
6.
Microbiol Spectr ; 11(3): e0037823, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2277255

ABSTRACT

Several viruses have been shown to modulate the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), the master regulator of redox homeostasis. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, also seems to disrupt the balance between oxidants and antioxidants, which likely contributes to lung damage. Using in vitro and in vivo models of infection, we investigated how SARS-CoV-2 modulates the transcription factor NRF2 and its dependent genes, as well as the role of NRF2 during SARS-CoV-2 infection. We found that SARS-CoV-2 infection downregulates NRF2 protein levels and NRF2-dependent gene expression in human airway epithelial cells and in lungs of BALB/c mice. Reductions in cellular levels of NRF2 seem to be independent of proteasomal degradation and the interferon/promyelocytic leukemia (IFN/PML) pathway. Furthermore, lack of the Nrf2 gene in SARS-CoV-2-infected mice exacerbates clinical disease, increases lung inflammation, and is associated with a trend toward increased lung viral titers, indicating that NRF2 has a protective role during this viral infection. In summary, our results suggest that SARS-CoV-2 infection alters the cellular redox balance by downregulating NRF2 and its dependent genes, which exacerbates lung inflammation and disease, therefore, suggesting that the activation of NRF2 could be explored as therapeutic approach during SARS-CoV-2 infection. IMPORTANCE The antioxidant defense system plays a major function in protecting the organism against oxidative damage caused by free radicals. COVID-19 patients often present with biochemical characteristics of uncontrolled pro-oxidative responses in the respiratory tract. We show herein that SARS-CoV-2 variants, including Omicron, are potent inhibitors of cellular and lung nuclear factor erythroid 2-related factor 2 (NRF2), the master transcription factor that controls the expression of antioxidant and cytoprotective enzymes. Moreover, we show that mice lacking the Nrf2 gene show increased clinical signs of disease and lung pathology when infected with a mouse-adapted strain of SARS-CoV-2. Overall, this study provides a mechanistic explanation for the observed unbalanced pro-oxidative response in SARS-CoV-2 infections and suggests that therapeutic strategies for COVID-19 may consider the use of pharmacologic agents that are known to boost the expression levels of cellular NRF2.


Subject(s)
Antioxidants , COVID-19 , Humans , Mice , Animals , Antioxidants/metabolism , SARS-CoV-2/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Disease Models, Animal , Pandemics , COVID-19/pathology , Lung , Epithelial Cells
7.
Int J Mol Sci ; 24(6)2023 Mar 22.
Article in English | MEDLINE | ID: covidwho-2275131

ABSTRACT

In all living organisms, there is a delicate balance between oxidation caused by reactive species (RS, also called free radicals) and antioxidant defence [...].


Subject(s)
Oxidative Stress , Pregnant Women , Humans , Child , Female , Pregnancy , Antioxidants/metabolism , Free Radicals , Fetus/metabolism , Reactive Oxygen Species
8.
Medicina (Kaunas) ; 59(3)2023 Mar 08.
Article in English | MEDLINE | ID: covidwho-2281823

ABSTRACT

Background and Objectives: Insufficient intake of essential micronutrient selenium (Se) increases the susceptibility to diseases associated with oxidative stress. The study aim was to assess Se status and oxidative stress in COVID-19 patients depending on severity of the disease. Materials and Methods: Blood plasma of 80 post-COVID-19 disease patients and 40 acutely ill patients were investigated. Concentration of Se was detected by a fluorometric method with di-amino-naphthalene using acidic hydrolysis. Selenoprotein P (Sepp1), malondialdehyde (MDA), and 4-hydroxynonenal (4-HNE) and their metabolite adducts were evaluated by spectrophotometric methods using commercial assay kits. Results: Obtained results demonstrated that Se and Sepp1 concentration in acute patients were significantly (p < 0.05 for Se and p < 0.001 for Sepp1) decreased compared with post-COVID-19 disease patients. However, in post-COVID-19 disease patients, Se values were close to the low limit of the norm for the European population. 4-HNE adducts concentration as a marker of lipid peroxidation was significantly increased in the acute patients group compared to the recovery group (p < 0.001). Conclusions: COVID-19 pathology is characterized by the induction of oxidative stress and suppression of antioxidant defenses during the acute phase. Lower levels of Se and Sepp1 and higher levels of reactive oxygen species reflect this imbalance, highlighting the role of oxidative stress in the disease's pathogenesis.


Subject(s)
COVID-19 , Selenium , Humans , SARS-CoV-2 , Oxidative Stress , Antioxidants/metabolism , Selenoprotein P/metabolism
9.
Free Radic Biol Med ; 190: 247-263, 2022 09.
Article in English | MEDLINE | ID: covidwho-2269132

ABSTRACT

Clinical studies have shown a significant positive correlation between age and the likelihood of being infected with SARS-CoV-2. This increased susceptibility is positively correlated with chronic inflammation and compromised neurocognitive functions. Postmortem analyses suggest that acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), with systemic and lung hyperinflammation, can cause significant morbidity and mortality in COVID-19 patients. Supraphysiological supplemental oxygen, also known as hyperoxia, is commonly used to treat decreased blood oxygen saturation in COVID-19 patients. However, prolonged exposure to hyperoxia alone can cause oxygen toxicity, due to an excessive increase in the levels of reactive oxygen species (ROS), which can overwhelm the cellular antioxidant capacity. Subsequently, this causes oxidative cellular damage and increased levels of aging biomarkers, such as telomere shortening and inflammaging. The oxidative stress in the lungs and brain can compromise innate immunity, resulting in an increased susceptibility to secondary lung infections, impaired neurocognitive functions, and dysregulated hyperinflammation, which can lead to ALI/ARDS, and even death. Studies indicate that lung inflammation is regulated by the central nervous system, notably, the cholinergic anti-inflammatory pathway (CAIP), which is innervated by the vagus nerve and α7 nicotinic acetylcholine receptors (α7nAChRs) on lung cells, particularly lung macrophages. The activation of α7nAChRs attenuates oxygen toxicity in the lungs and improves clinical outcomes by restoring hyperoxia-compromised innate immunity. Mechanistically, α7nAChR agonist (e.g., GAT 107 and GTS-21) can regulate redox signaling by 1) activating Nrf2, a master regulator of the antioxidant response and a cytoprotective defense system, which can decrease cellular damage caused by ROS and 2) inhibiting the activation of the NF-κB-mediated inflammatory response. Notably, GTS-21 has been shown to be safe and it improves neurocognitive functions in humans. Therefore, targeting the α7nAChR may represent a viable therapeutic approach for attenuating dysregulated hyperinflammation-mediated ARDS and sepsis in COVID-19 patients receiving prolonged oxygen therapy.


Subject(s)
Acute Lung Injury , COVID-19 , Hyperoxia , Pneumonia , Respiratory Distress Syndrome , Acute Lung Injury/metabolism , Aging , Antioxidants/metabolism , COVID-19/therapy , Humans , Hyperoxia/complications , Hyperoxia/metabolism , Lung/metabolism , Oxygen/metabolism , Pneumonia/metabolism , Reactive Oxygen Species/metabolism , SARS-CoV-2 , alpha7 Nicotinic Acetylcholine Receptor/metabolism
10.
Ir J Med Sci ; 191(4): 1925-1930, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2253509

ABSTRACT

BACKGROUND: Accumulating evidence suggests that oxidative stress is closely related to the pathogenesis and severity of COVID-19 infection. Here, we attempted to compare thiol, total oxidant status (TOS), total antioxidant status (TAS), and oxidative stress index (OSI) levels between COVID-19 patients who need and do not need intensive care unit (ICU) support, and determine whether these markers could be used as predictors of ICU admission. METHODS: We recruited 86 patients with COVID-19 infection and classified them into two groups according to the level of care: ICU group (n = 40) and non-ICU group (n = 46). Thiol, TAS, TOS, and OSI levels were determined and compared between the two groups. RESULTS: The levels of thiol and TAS in serum were markedly lower in ICU patients than in the non-ICU patients. On the contrary, TOS and OSI levels were markedly higher. Inflammatory markers, including white blood cell, neutrophil, C-reactive protein, procalcitonin, and ferritin, were negatively correlated with the thiol and TAS, and positively correlated with the TOS and OSI. We determined that areas under the ROC curve for thiol, TAS, TOS, and OSI were 0.799, 0.778, 0.713, and 0.780, respectively. CONCLUSIONS: Our results revealed that the increase in oxidative stress and decrease in antioxidant levels in COVID-19-infected patients were associated with worsening of disease. Thiol, TAS, TOS, and OSI parameters can be used to distinguish between ICU patients and those who do not, among which thiol was the best predictor of ICU requirement.


Subject(s)
COVID-19 , Oxidants , Antioxidants/metabolism , Biomarkers/metabolism , Humans , Oxidative Stress , Sulfhydryl Compounds
11.
Cell Biochem Funct ; 40(7): 694-705, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2276800

ABSTRACT

The aim of this study was to evaluate the systemic redox state and inflammatory markers in intensive care unit (ICU) or non-ICU severe COVID-19 patients during the hospitalization period. Blood samples were collected at hospital admission (T1) (Controls and COVID-19 patients), 5-7 days after admission (T2: 5-7 days after hospital admission), and at the discharge time from the hospital (T3: 0-72 h before leaving hospital or death) to analyze systemic oxidative stress markers and inflammatory variables. The reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) were analyzed in peripheral granulocytes and monocytes. THP-1 human monocytic cell line was incubated with plasma from non-ICU and ICU COVID-19 patients and cell viability and apoptosis rate were analyzed. Higher total antioxidant capacity, protein oxidation, lipid peroxidation, and IL-6 at hospital admission were identified in both non-ICU and ICU COVID-19 patients. ICU COVID-19 patients presented increased C-reactive protein, ROS levels, and protein oxidation over hospitalization period compared to non-ICU patients, despite increased antioxidant status. Granulocytes and monocytes of non-ICU and ICU COVID-19 patients presented lower MMP and higher ROS production compared to the healthy controls, with the highest values found in ICU COVID-19 group. Finally, the incubation of THP-1 cells with plasma acquired from ICU COVID-19 patients at T3 hospitalization period decreased cell viability and apoptosis rate. In conclusion, disturbance in redox state is a hallmark of severe COVID-19 and is associated with cell damage and death.


Subject(s)
COVID-19 , Antioxidants/metabolism , C-Reactive Protein/metabolism , Humans , Interleukin-6/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism , SARS-CoV-2
12.
Free Radic Res ; 56(11-12): 740-748, 2022.
Article in English | MEDLINE | ID: covidwho-2254038

ABSTRACT

Oxidative Stress (OS) is involved in the pathogenesis of COVID-19 and in the mechanisms by which SARS-CoV-2 causes injuries to tissues, leading to cytopathic hypoxia and ultimately multiple organ failure. The measurement of blood glutathione (GSH), H2O2, and catalase activity may help clarify the pathophysiology pathways of this disease. We developed and standardized a sensitive and specific chemiluminescence technique for H2O2 and GSH measurement in plasma and red blood cells of COVID-19 patients admitted to the intensive care unit (ICU). Contrary to what was expected, the plasma concentration of H2O2 was substantially reduced (10-fold) in COVID-19 patients compared to the healthy control group. From the cohort of patients discharged from the hospital and those who were deceased, the former showed a 3.6-fold and the later 16-fold H2O2 reduction compared to the healthy control. There was a 4.4 reduction of H2O2 concentration in the deceased group compared to the discharged group. Interestingly, there was no variation in GSH levels between groups, and reduced catalase activity was found in discharged and deceased patients compared to control. These data represent strong evidence that H2O2 is converted into highly reactive oxygen species (ROS), leading to the worst prognosis and death outcome in COVID-19 patients admitted to ICU. Considering the difference in the levels of H2O2 between the control group and the deceased patients, it is proposed the quantification of plasma H2O2 as a marker of disease progression and the induction of the synthesis of antioxidant enzymes as a strategy to reduce the production of oxidative stress during severe COVID-19.HighlightsH2O2 plasma levels is dramatically reduced in patients who deceased compared to those discharged and to the control group.Plasmatic quantification of H2O2 can be possibly used as a predictor of disease progression.Catalase activity is reduced in COVID-19.GSH levels remain unchanged in COVID-19 compared to the control group.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/metabolism , Hydrogen Peroxide , Catalase/metabolism , Oxidative Stress , Antioxidants/metabolism , Glutathione/metabolism
13.
Clin Lab ; 69(2)2023 02 01.
Article in English | MEDLINE | ID: covidwho-2240556

ABSTRACT

BACKGROUND: Previous reports have suggested the role of oxidative stress in progression of COVID-19 infection, but there is limited information regarding the effect of antioxidant capacity and total oxidant status of patients with COVID-19 on disease severity. In the present study, we aimed to investigate the relationship between total antioxidant capacity (TAC), total oxidant status (TOS), TAC/TOS levels, and disease severity in hospitalized patients with COVID-19. METHODS: This cohort study was carried out at Masih Daneshvari Hospital in Tehran, Iran, from September 2020 to October 2020. Clinical data of 331 patients with COVID-19 admitted to the hospital were analyzed and divided into mild, moderate, and severe groups (needed oxygen, intubation, and mechanical ventilation). The patients' TAC, TOS, and TAC/TOS levels were assessed using the serum samples by colorimetric assay kit. RESULTS: We found no significant difference in serum levels of TAC, TOS, and TAC/TOS in terms of the disease severity. CONCLUSIONS: These results indicated that total antioxidant capacity and total oxidant status may not be the determining factor on the disease severity.


Subject(s)
Antioxidants , COVID-19 , Humans , Antioxidants/metabolism , Oxidants , Cohort Studies , Iran , Oxidative Stress , Patient Acuity
14.
Medicina (Kaunas) ; 59(2)2023 Jan 26.
Article in English | MEDLINE | ID: covidwho-2216595

ABSTRACT

Background and Objectives: The Mediterranean diet's bioactive components are suggested to strengthen the immune system and to exert anti-inflammatory actions. This study investigated the association between adherence to the Mediterranean diet with serum inflammatory factors, total antioxidant capacity, appetite, and symptoms of COVID-19 patients. Materials and Methods: This cross-sectional study was conducted among 600 Iranian COVID-19 patients selected by a simple random method. The ten-item Mediterranean diet adherence questionnaire was used to assess diet adherence. At the beginning of the study, 5 cc of blood was taken from all patients for measurement of serum interleukin 1ß) IL-1ß), tumor necrosis factor (TNF-α), malondialdehyde (MDA), high sensitivity C-reactive protein (hs-CRP) and total antioxidant capacity (TAC). A human ELISA kit with serial number 950.090.096 produced by the Diaclone Company was used to test this cytokine using the sandwich ELISA method. Results: One hundred and five patients presented a high adherence and 495 patients presented a low adherence to the Mediterranean diet. The incidence of fever, cough, diarrhea, taste changes, and pneumonia severity index were significantly lower in patients who adhered to the Mediterranean diet more than other patients. Serum levels of tumor necrosis factor (5.7 ± 2.1 vs. 6.9 ± 2.8 p = 0.02), interleukin 1 beta (3.2 ± 0.02 vs. 4.9 ± 0.01 p = 0.02), high-sensitivity C-reactive protein (17.08 ± 4.2 vs. 19.8 ± 2.5 p = 0.03), and malondialdehyde (5.7 ± 0.2 vs. 6.2 ± 0.3 p = 0.02) were significantly lower in patients who adhered more to the Mediterranean diet than other patients. Conclusion: The Mediterranean diet can improve the symptoms and elevated serum inflammatory factors in COVID-19 patients, so clinical trial studies are suggested to confirm this effect.


Subject(s)
COVID-19 , Diet, Mediterranean , Humans , Antioxidants/metabolism , Appetite , Biomarkers , Cross-Sectional Studies , Iran , C-Reactive Protein/metabolism , Tumor Necrosis Factor-alpha , Oxidative Stress , Malondialdehyde
15.
Free Radic Res ; 56(9-10): 577-594, 2022.
Article in English | MEDLINE | ID: covidwho-2187328

ABSTRACT

Drug repurposing allows searching for new biological targets, especially against emerging diseases such as Covid-19. Drug colchicine (COL) presents recognized anti-inflammatory action, while the nanotechnology purpose therapies with low doses, efficacy, and decrease the drug's side-effects. This study aims to evaluate the effects of COL and colchicine nanocapsules (NCCOL) on survival, LC50, activity locomotor, and oxidative stress parameters, elucidating the toxicity profile in acute and chronic exposure in Drosophila melanogaster. Three-day-old flies were investigated into groups: Control, 0.001, 0.0025, 0.005, and 0.010 mg/mL of COL or NCCOL. The survival rate, open field test, LC50, oxidative stress markers (reactive species (RS) production, thiobarbituric acid reactive substances), antioxidant enzyme activity (catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase), protein thiols, nonprotein thiols, acetylcholinesterase activity, and cell viability were measured. As a result, acute exposure to the COL decreases the number of crosses in the open field and increases CAT activity. NCCOL reduced RS levels, increased lipoperoxidation and SOD activity. Chronic exposure to the COL and NCCOL in high concentrations implied high mortality and enzymatic inhibition of the CAT and AChE, and only the COL caused locomotor damage in the open field test. Thus, NCCOL again reduced the formation of RS while COL increased. In this comparative study, NCCOL was less toxic to the antioxidant system than COL and showed notable involvement of oxidative stress as one of their toxicity mechanisms. Future studies are needed to elucidate all aspects of nanosafety related to the NCCOL.


Subject(s)
COVID-19 , Drosophila melanogaster , Animals , Drosophila melanogaster/metabolism , Antioxidants/metabolism , Acetylcholinesterase/metabolism , Acetylcholinesterase/pharmacology , Oxidative Stress , Catalase/metabolism , Superoxide Dismutase/metabolism , Sulfhydryl Compounds/metabolism
16.
Exp Biol Med (Maywood) ; 248(3): 271-279, 2023 02.
Article in English | MEDLINE | ID: covidwho-2195301

ABSTRACT

Epidemiological evidence links lower air quality with increased incidence and severity of COVID-19; however, mechanistic data have yet to be published. We hypothesized air pollution-induced oxidative stress in the nasal epithelium increased viral replication and inflammation. Nasal epithelial cells (NECs), collected from healthy adults, were grown into a fully differentiated epithelium. NECs were infected with the ancestral strain of SARS-CoV-2. An oxidant combustion by-product found in air pollution, the environmentally persistent free radical (EPFR) DCB230, was used to mimic pollution exposure four hours prior to infection. Some wells were pretreated with antioxidant, astaxanthin, for 24 hours prior to EPFR-DCB230 exposure and/or SARS-CoV-2 infection. Outcomes included viral replication, epithelial integrity, surface receptor expression (ACE2, TMPRSS2), cytokine mRNA expression (TNF-α, IFN-ß), intracellular signaling pathways, and oxidative defense enzymes. SARS-CoV-2 infection induced a mild phenotype in NECs, with some cell death, upregulation of the antiviral cytokine IFN-ß, but had little effect on intracellular pathways or oxidative defense enzymes. Prior exposure to EPFR-DCB230 increased SARS-CoV-2 replication, upregulated TMPRSS2 expression, increased secretion of the proinflammatory cytokine TNF-α, inhibited expression of the mucus producing MUC5AC gene, upregulated expression of p21 (apoptosis pathway), PINK1 (mitophagy pathway), and reduced levels of antioxidant enzymes. Pretreatment with astaxanthin reduced SARS-CoV-2 replication, downregulated ACE2 expression, and prevented most, but not all EPFR-DCB230 effects. Our data suggest that oxidant damage to the respiratory epithelium may underly the link between poor air quality and increased COVID-19. The apparent protection by antioxidants warrants further research.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , COVID-19/metabolism , Antioxidants/metabolism , Tumor Necrosis Factor-alpha/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Free Radicals/metabolism , Cytokines/metabolism , Respiratory Mucosa/metabolism , Oxidants/metabolism
17.
Annu Rev Nutr ; 42: 275-309, 2022 08 22.
Article in English | MEDLINE | ID: covidwho-2153149

ABSTRACT

Ferroptosis is a type of regulated cell death characterized by an excessive lipid peroxidation of cellular membranes caused by the disruption of the antioxidant defense system and/or an imbalanced cellular metabolism. Ferroptosis differentiates from other forms of regulated cell death in that several metabolic pathways and nutritional aspects, including endogenous antioxidants (such as coenzyme Q10, vitamin E, and di/tetrahydrobiopterin), iron handling, energy sensing, selenium utilization, amino acids, and fatty acids, directly regulate the cells' sensitivity to lipid peroxidation and ferroptosis. As hallmarks of ferroptosis have been documented in a variety of diseases, including neurodegeneration, acute organ injury, and therapy-resistant tumors, the modulation of ferroptosis using pharmacological tools or by metabolic reprogramming holds great potential for the treatment of ferroptosis-associated diseases and cancer therapy. Hence, this review focuses on the regulation of ferroptosis by metabolic and nutritional cues and discusses the potential of nutritional interventions for therapy by targeting ferroptosis.


Subject(s)
Ferroptosis , Antioxidants/metabolism , Humans , Iron/metabolism , Lipid Peroxidation
18.
Biol Trace Elem Res ; 200(12): 5013-5021, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2118245

ABSTRACT

Our study aims to determine the relationship between hepcidin, aquaporin (AQP-1), copper (Cu), zinc (Zn), iron (Fe) levels, and oxidative stress in the sera of seriously ill COVID-19 patients with invasive mechanical ventilation. Ninety persons with and without COVID-19 were taken up and separated into two groups. The first group included seriously COVID-19 inpatients having endotracheal intubation in the intensive care unit (n = 45). The second group included individuals who had negative PCR tests and had no chronic disease (the healthy control group n = 45). AQP-1, hepcidin, Zn, Cu, Fe, total antioxidant status (TAS), and total oxidant status (TOS) were studied in the sera of both groups, and the relations of these levels with oxidative stress were determined. When the COVID-19 patient and the control groups were compared, all studied parameters were found to be statistically significant (p < 0.01). Total oxidant status (TOS), oxidative stress index (OSI), and AQP-1, hepcidin, and Cu levels were increased in patients with COVID-19 compared to healthy people. Serum TAC, Zn, and Fe levels were found to be lower in the patient group than in the control group. Significant correlations were detected between the studied parameters in COVID-19 patients. Results indicated that oxidative stress may play an important role in viral infection due to SARS-CoV-2. We think that oxidative stress parameters as well as some trace elements at the onset of COVID-19 disease will provide a better triage in terms of disease severity.


Subject(s)
COVID-19 , Trace Elements , Antioxidants/metabolism , Copper , Critical Illness , Hepcidins , Humans , Iron , Oxidants , Oxidative Stress , SARS-CoV-2 , Zinc
19.
Redox Biol ; 56: 102465, 2022 10.
Article in English | MEDLINE | ID: covidwho-2105815

ABSTRACT

BACKGROUND: The pathophysiologic significance of redox imbalance is unquestionable as numerous reports and topic reviews indicate alterations in redox parameters during corona virus disease 2019 (COVID-19). However, a more comprehensive understanding of redox-related parameters in the context of COVID-19-mediated inflammation and pathophysiology is required. METHODS: COVID-19 subjects (n = 64) and control subjects (n = 19) were enrolled, and blood was drawn within 72 h of diagnosis. Serum multiplex assays and peripheral blood mRNA sequencing was performed. Oxidant/free radical (electron paramagnetic resonance (EPR) spectroscopy, nitrite-nitrate assay) and antioxidant (ferrous reducing ability of serum assay and high-performance liquid chromatography) were performed. Multivariate analyses were performed to evaluate potential of indicated parameters to predict clinical outcome. RESULTS: Significantly greater levels of multiple inflammatory and vascular markers were quantified in the subjects admitted to the ICU compared to non-ICU subjects. Gene set enrichment analyses indicated significant enhancement of oxidant related pathways and biochemical assays confirmed a significant increase in free radical production and uric acid reduction in COVID-19 subjects. Multivariate analyses confirmed a positive association between serum levels of VCAM-1, ICAM-1 and a negative association between the abundance of one electron oxidants (detected by ascorbate radical formation) and mortality in COVID subjects while IL-17c and TSLP levels predicted need for intensive care in COVID-19 subjects. CONCLUSION: Herein we demonstrate a significant redox imbalance during COVID-19 infection affirming the potential for manipulation of oxidative stress pathways as a new therapeutic strategy COVID-19. However, further work is requisite for detailed identification of oxidants (O2•-, H2O2 and/or circulating transition metals such as Fe or Cu) contributing to this imbalance to avoid the repetition of failures using non-specific antioxidant supplementation.


Subject(s)
COVID-19 , Antioxidants/metabolism , Electron Spin Resonance Spectroscopy , Free Radicals , Humans , Hydrogen Peroxide , Intercellular Adhesion Molecule-1/metabolism , Interleukin-17/metabolism , Nitrates , Nitrites , Oxidants/metabolism , Oxidation-Reduction , Oxidative Stress , RNA, Messenger/metabolism , Uric Acid , Vascular Cell Adhesion Molecule-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL